AE379

Product Features

- 50 ~ 3500MHz
- GaAs E-pHEMT MMIC
- 2W Medium Amplifier
- Higher linearity
- Low Noise Figure
- High Max input power
- SOIC-8 SMD Type package
- · Higher productivity
- Lower manufacturing cost
- Pb Free / RoHS Standard

Applications

- · Cellular, GSM
- PCS, DCS, W-CDMA
- Wibro, WiMax, WiFi
- Tetra, CATV, Satellite system
- RFID, Femtocell
- Multi-metering

Package Type: SOIC-8

Description

AE379 is a drive or pre-drive amplifier designed in a low cost SOIC-8 package.

This MMIC is based on Gallium Arsenide Enhancement Mode pHEMT which shows low current and high IP3.

It is designed as driver devices for infrastructure equipment in the 50~3500MHz Wireless technologies such as Cellular, GSM, PCS, W-CDMA, Wibro, WiMax System.

The data in this spec sheet is valid only for 50ohm application.

Electrical Specifications

PARAMETER	LINITE	Test Frequency 1920 ~ 1980MHz		REMARK	
	UNIT				
Small Signal Gain	dB	11.5			-
Input Return Loss	dB	-13			-
Output Return Loss	dB	-16			-
Output IP3*	dBm	45			-
1dB Compression Point	dBm	33			-
Noise Figure	dB	2.3			-
WCDMA**	dBm	23		@-50	dBc ACLR
Efficiency	%	60		(a) P1dB
Supply Voltage/DC Current	V/mA	5/390			-

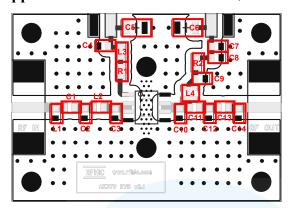
Note

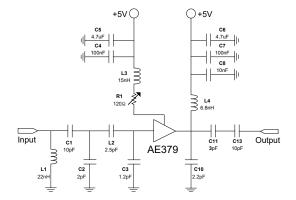
Absolute Maximum Ratings

PARAMETER	UNIT	MIN	TYP	MAX	REMARK
Device Voltage	V	-	5	7	-
Operating Case Temperature	$^{\circ}$	-40	-	85	-
Storage Temperature	°C	-40	-	150	-
ESD Human Body Model	-	-	Class 1C	-	-
Moisture Sensitivity Level	-	-	MSL1	-	-

Korea Facility: +82-31-8069-3000 / www.rfhic.com US Facility: +1-919-677-8780 / www.rfhic.com/rfhic-us/

1 / 5


^{1.} OIP3 measured with 2 tones at an output power of +15dBm/tone separated by 1MHz


^{2.} WCDMA 3G 1FA Test Model1 64DPCH, PAR = 10dB@0.01%

AE379

Application Circuit: 1920 ~ 1980MHz, 50ohm System

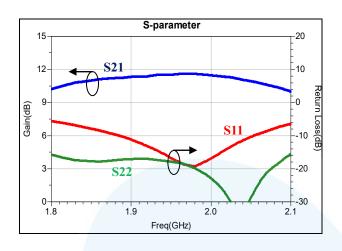
EVB BOM					
Description	Description Reference Designator		Manufacturer's P/N		
CAP, 1.2pF, 1608	C3	Murata	GRM1885C1H1R2CZ01D		
CAP, 2pF, 1608	C2	Murata	GRM1885C1H2R0CZ01D		
CAP, 2.2pF, 1608	C10	Murata	GRM1885C1H2R2CZ01D		
CAP, 2.5pF, 1608	L2	Murata	GRM1885C1H2R5CZ01D		
CAP, 3pF, 1608	C11	Murata	GRM1885C1H3R0CZ01D		
CAP, 10pF, 1608	C1, C13	Murata	GRM1885C1H100JA01D		
CAP, 10nF, 1608	C8	Murata	GRM188R71H103KA01D		
CAP, 100nF, 1608	C4, C7	Murata	GRM188R71C104KA01D		
CAP, 4.7uF, 3216-18	C5, C6	AVX	TAJA475M016RNJ		
IND, 6.8nH, 0805, W/W	L4	Murata	LQW2BHN6N8DB		
IND, 15nH, 0603, W/W	L3	Murata	LQW18AN15NG00D		
IND, 22nH, 0603	L1	Taiyo Yuden	HK1608 22NJ		
RES, 00hm, 1608	R2	ROHM	MCR03 EZPJ000		
RES, 1200hm, 1608	R1	ROHM	MCR03 EZPJ121		
DNP	C9, C12, C14	-	-		

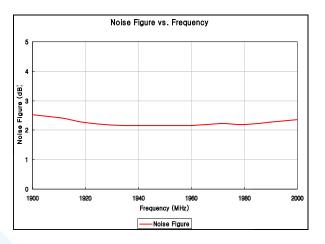
Typical Performance

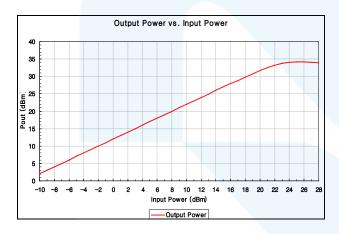
PARAMETER	UNIT	TYPICAL	REMARK	
Operational Frequency Range	MHz	1920 ~ 1980	-	
Small Signal Gain(S21)	dB	11.5	@ 1950MHz	
Input Return Loss(S11)	dB	-13	-	
Output Return Loss(S22)	dB	-16	-	
Output IP3(OIP3)	dBm	45	@ 1950MHz	
1dB Compression Point(P ₁ dB) / Efficiency	dBm / %	33 / 60		
Noise Figure(NF)	dB	2.3	-	
WCDMA**	dBm	23	-	

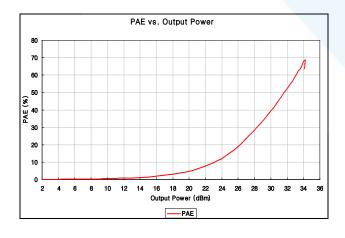
Note

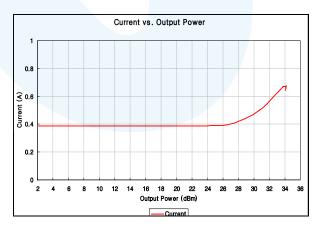
Test condition : Supply Voltage/DC Current = 5V/390mA, T = $25\,^{\circ}$ C

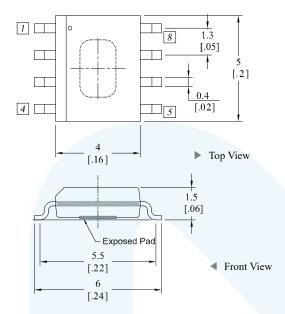

1. OIP3 measured with 2 tones at an output power of +10dBm/tone separated by 1MHz

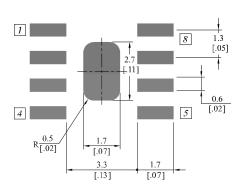

2. WCDMA 3G 1FA Test Model1 64DPCH, PAR = 10dB@0.01%


AE379


Typical Performance @ Voltage = 5V(390mA), T=25 °C, 50ohm System

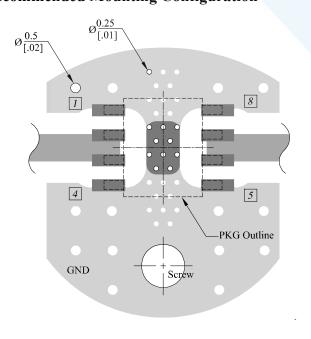



AE379



Package Dimensions (Type: SOIC-8)

Recommended Pattern


* Unit: mm[inch] | Tolerance $\pm 0.2[.008]$

Pin Description						
Pin No	Function	Pin No	Function			
1	Bias Control	5	GND			
2	Input	6	Output / Bias			
3	Input	7	Output / Bias			
4	GND	8	GND			

Recommended Mounting Configuration

* Mounting Configuration Notes

- 1. Ground / thermal via holes are critical for the proper performance of this device.
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via hole region contacts
- the heatsink.
- 4. Do not put solder mask on the backside of the PCB in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PCB material and construction.
- 6. Use 1 oz. Copper minimum.

AE379

Revision History

Part Number	Release Date	Version	Modification	Data Sheet Status
AE379	2012.10.17	0.3	New datasheet format	-
AE379	2012.4.25	0.2	FIXED : Operating Frequency Range	-
AE379	2010.12.27	0.1	Initial Release	-

Certification

This product is manufactured by a company that is certified for the AS9100D quality management system.

RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product at any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclaims any and all liability, including without limitation consequential or incidental damages. RFHIC products are not intended for use in life support equipment or application where malfunction of the product can be expected to result in personal injury or death. Buyer uses or sells such products for any such unintended or unauthorized application, buyer shall indemnify, protect, and hold RFHIC Corporation and its directors, officers, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use. All sales inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US sales team through our website at https://rfhic.com/contact/. For all other inquiries, please contact our international sales team through our website portal at https://rfhic.com/contact/.