Preliminary GaN Hybrid Amplifier

RIH25030-20

Product Features

- Operating Frequency 2400~2500MHz
- Power gain 15.5dB @ Pavg=30W
- Total Efficiency 70% @ Pavg=30W
- Input/Output Impedance 50ohm
- GaN on SiC Technology
- Copper Clad laminates board
- 13x17x2.9mm small size SMD package

Applications

- · Industrial Heating and Drying
- Scientific
- Medical
- · Plasma Generator
- Anti-Drone System
- Jamming System

Package Type: PP-1S

Description

The RIH25030-20 is a GaN Hybrid power amplifier module designed for Industrial, Scientific, Medical (ISM) and Jamming applications at 2450MHz. RIH Series is an suitable for use in CW, pulse and Linear application and 500hm input and output impedance matched device can deliver up to 30W of saturation power and operating drain voltage 45V.

Electrical Specifications @ Vds=45V, Ta=25°C, 50Ω System

PARAMETER	UNIT	MIN	TYP	MAX	CONDITION	
Frequency Range	MHz	2400 2500		2500	ZS = ZL = 50 ohm	
Power Gain		14	15.5	-	D 4 2017	
Gain Flatness	dB	-		1	Pout=30W	
Input Return Loss		-	10		Pin=0dBm	
Pout @ Saturation	dBm	IBm 40 44.77		45.2	CW	
Drain Efficiency	%	65	70	COL	Pavg=30W	
Supply Voltage	V	-3.2	-3.0*1	-2.7	Vgs	
	v	25	45	50	Vds	
Gate Current(Vgs)		-	3.6		D20W	
Drain Current(Vds)	mA	-	960	-	Pout=30W	

Note

1. Vgs (Pin#1) set: Idq 50mA

Caution

The drain voltage must be supplied to the device after the gate voltage is supplied

Turn on → Turn on the Gate voltage supply and last turn on the Drain voltage supplies

Turn off → Turn off the Drain voltage and last turn off the Gate voltage

Certification

This product is manufactured by a company that is certified for the AS9100D quality management system.

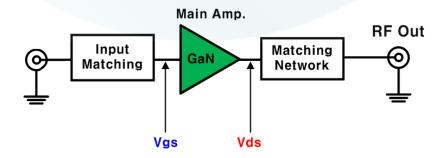
Preliminary

GaN Hybrid Amplifier

RIH25030-20

Mechanical Specifications

PARAMETER	UNIT	TYPICAL	RATING
Mass	g	2.0	-
Dimension	mm	13 x 17 x 2.9	±0.15

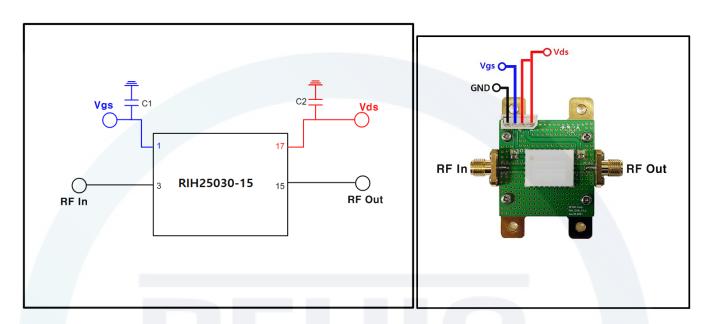

Absolute Maximum Ratings

PARAMETER	UNIT	RATING	SYMBOL	CONDITION
Gate-Source Voltage	V	- 10 ∼ 0	Vgs	Tc=25°C
Drain-Source Voltage	V	100	Vds2	Tc=25°C
Gate Current	mA	3.6	$C_{\scriptscriptstyle G}$	Tc=25°C
Power Dissipation	W	30	P_D	Tc=85°C
Operating Junction Temperature	°C	225	$T_{\rm J}$	-
Operating Case Temperature	°C	-30 ∼ 125	Tc	-
Storage Temperature	°C	- 40 ∼ 125	Tstg	-
Soldering Temperature	°C	245	Ts	30s Max.
RF Input Level	dBm	30	Pin	Tc=25°C

ESD Level

ESD Level				
PARAMETER	STANDARD	RESULT		
НВМ	JESD22-A114E	Class 1C		
CDM	JESD22-C101F	Class C2		
MSL	JEDEC J-STD-020	MSL3		

Block Diagram

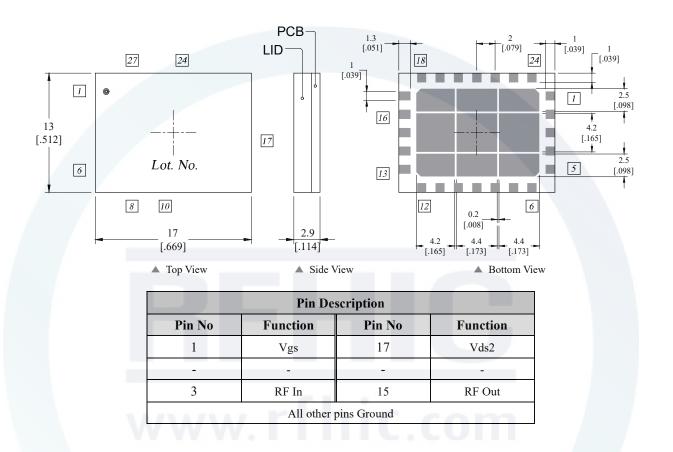


GaN Hybrid Amplifier

RIH25030-20

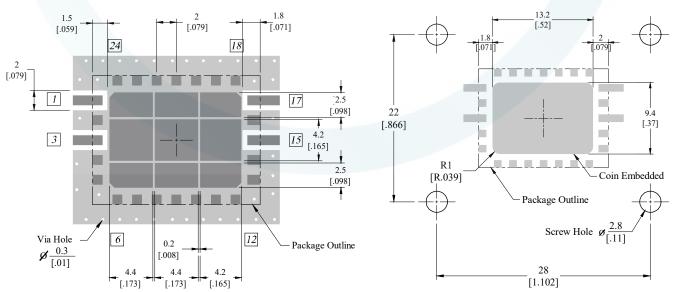
Application Circuit

Bill of Material (Evaluation board)


LOCATION	Part Number	Value	
C1	GRM21BR71C475KA73L	4.7uF / 16V	
C2	GRM21BC72A105KE01L	1.0uF / 100V	
PCB	RO4350B	2Layer, 20mil, 1oz	

GaN Hybrid Amplifier

RIH25030-20



Package Dimensions (Type: PP-1S) * Unit: mm[inch]

Recommended Pattern

Mounting Configuration & Coin Embedded

Korean Facility: +82-31-8069-3000 / www.rfhic.com US Facility: +1-919-677-8780 / www.rfhic.com/rfhic-usa

Preliminary

GaN Hybrid Amplifier

RIH25030-20

* Mounting Configuration Notes

- 1. For the proper performance of the device, Ground / Thermal via holes must be designed to remove heat.
- 2. To properly use heatsink, ensure the ground/thermal via hole region to contact the heatsink. We recommend the mounting screws be added near the heatsink to mount the board.
- 3. In designing the necessary RF trace, width will depend upon the PCB material and construction.
- 4. Use 2mm Copper Coin embedded PCB minimum thickness for the heatsink.
- 5. Do not put solder mask on the backside of the PCB in the region where the board contacts the heatsink
- 6. We recommend adding as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 7. We recommend that the PCB with the RF device in a hybrid package is not washed to remove the flux.

Ordering Information

Part Number	Package Design	
	-R (Reel)	
RIH25030-20	-B (Bulk)	
	-EVB (Evaluation Board)	

Revision History

Part Number	Release Date	Version	Modification	Data Sheet Status
RIH25030-20	2021.07.12	0.1	-	Preliminary
				-
				-

RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product at any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclaims any and all liability, including without limitation consequential or incidental damages. RFHIC products are not intended for use in life support equipment or application where malfunction of the product can be expected to result in personal injury or death. Buyer uses or sells such products for any such unintended or unauthorized application, buyer shall indemnify, protect and hold RFHIC Corporation and its directors, officers, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use.

Sales, inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US Sales Team at +1-919-677-8780. For all other inquiries, please contact the International Sales Team at +82-31-8069-3000

Korean Facility: +82-31-8069-3000 / www.rfhic.com

US Facility: +1-919-677-8780 / www.rfhic.com/rfhic-usa

5 / 5

Version 0.1