

Product Features

- 2400 ~ 2500MHz (ISM band)
- 110W CW Psat @ 50V
- 71% Drain Efficiency @ 50V
- Excellent Ruggedness
- Excellent Thermal Stability
- Internally Matched

Applications

- · Industrial Heating and Drying
- Scientific
- Medical : Skin Treatment, Blood Therapy
- · Plasma Lighting

Package Type : NS-AS01

Description

The 100W CW RF Power Transistor is designed for Industrial, Scientific, Medical (ISM) and Plasma Lighting applications at 2450MHz. This device is suitable for use in CW, pulse and linear applications. This high efficiency rugged device is targeted to replace Industrial magnetrons and other vacuum tubes currently powering industrial heating, drying, plasma lighting and medical systems.

Typical CW Peak Power Performance $(V_{DS}=+50V, Tc=25^{\circ}C, 50\Omega)$

Frequency [MHz]	Signal Type	Pin [W]	Power Gain [dB]	Drain Efficiency [%]	Pout [W]
2400.0		4.0	15.0	73.3	127.3
2450.0	CW	3.9	14.8	72.0	118.6
2500.0		3.8	14.6	71.0	110.3

Absolute Maximum Ratings

Rating	Symbol	Value	Unit	Condition		
Drain to Source Voltage	V _{DSS}	150	V	Tc=25°C		
Gate to Source Voltage	V _{GS}	-10, +2	v v	Tc=25°C		
Operating Voltage	V _{DD}	52	V _{DC}	-		
Maximum Forward Gate Current	Igmax	16	mA	Tc=25°C		
Maximum Drain Current ^{*1}	Idmax	6	А	Tc=25°C		
Power Dissipation	P _{DISS}	61.5	W	Tc=85°C		
Storage Temperature	T _{STG}	-65, +150	°C	-		
Case Operating Temperature	T _C	-40, +150	°C	-		
Operating Junction Temperature ^{*2}	τ _J	225	°C	-		
Soldering Temperature ^{*3}	Ts	245	°C	-		

Note

*1 Current Limit for long term, reliable operation.

*2 Continuous use at maximum temperature will affect MTTF. *3 Refer to the Application Note(AN-002) on soldering - "Solder Condition for RFHIC's GaN Device"

Thermal Characteristics

Rating	Symbol	Value	Unit	Condition
Thermal Resistance, Junction to Case	R $_{ m BJC}$	2.27 *1	°C/W	Tc=85°C

Note

*1 Measured for the IE24100P at dissipation power is 61.5W

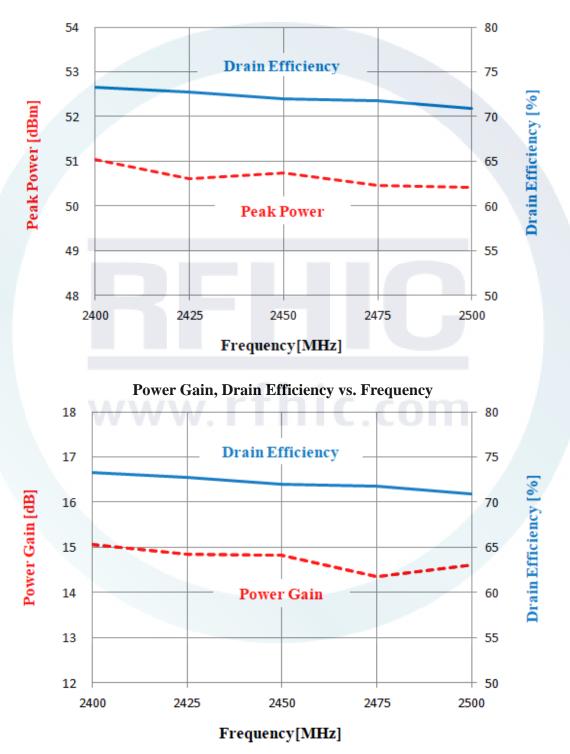
Characteristics	Conditions	Symbol	Min	Тур	Max	Unit		
DC Characteristics ^{*1}								
Gate Threshold Voltage	$V_{DS} = 10V$	V _{GS(TH)}	-3.8	-3.0	-2.3	V _{DC}		
Gate Threshold Voltage	I _D = 14.4mA	V GS(TH)		-3.0	-2.3			
Cata Quiagaant Valtaga	$V_{\rm DS} = 50V$	37		2.1		V_{DC}		
Gate Quiescent Voltage	$I_D = 50 mA$	$V_{GS(Q)}$	-	-3.1	-			
Saturated Drain Current ^{*2}	$V_{DS} = 6V$	I _{DS}	12.0	14.4		٨		
Saturated Dram Current	$V_{GS} = 2V$	IDS	12.0			А		
Drain-Source Breakdown Voltage	$V_{GS} = -8V$	V _{BR}	150	-		V		
Dram-Source Breakdown voltage	$I_D = 14.4 mA$	v BR				v		
Gate Leakage Current	$V_{GS} = -8V$	I _{GLKG}	-3.2	-	1	mA		
Gate Leakage Current	$V_{\rm DS} = 120 V$	IGLKG						
Drain Leakage Current	$V_{GS} = -8V$	Idlkg			5.8	mA		
Dram Leakage Current	$V_{\rm DS} = 120 V$	IDLKG				ша		
	RF Characteristic	s (Fc = 2450	MHz unless	otherwise note	d)			
Seturated Output Demon*3	$V_{\rm DS} = 50V$	Psat	100	110	-	w		
Saturated Output Power ^{*3}	$I_{DQ} = 50 mA$	PSAT						
	$V_{\rm DS} = 50 V$							
CW Drain Efficiency*3	$I_{DQ} = 50 mA$	η	68	72	-	%		
W1	P _{OUT} = P _{SAT} CW	rni	CC	om				
	$V_{\rm DS} = 50V$							
Output Mismatch Stress ^{*4, 5}	$I_{DQ} = 50 mA$	VSWR	-	-	10:1	ψ		
	$\mathbf{P}_{\mathbf{OUT}} = \mathbf{P}_{\mathbf{SAT}}$ Pulsed							

Electrical Characteristics (Tc=25°C unless otherwise noted)

Note

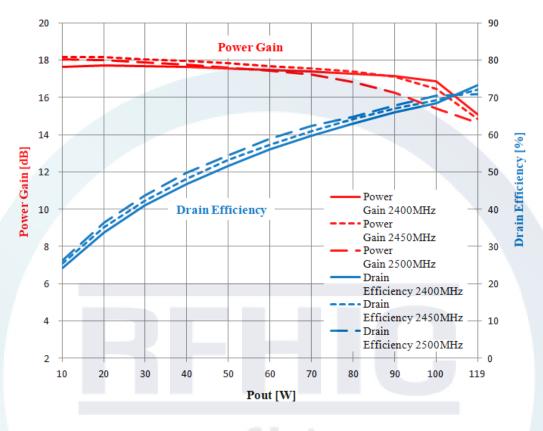
*1 Measured on wafer prior to packaging.

*2 Scaled from PCM data.


*3 CW(Continuous Wave) signal operation condition.

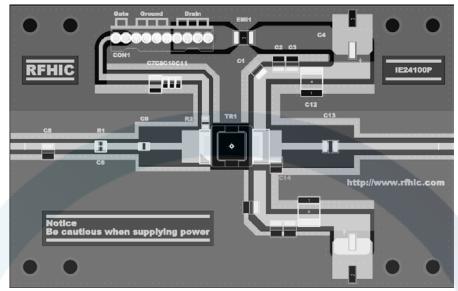
*4 Pulse width 100usec, Duty Cycle 10%.
*5 Measured in the IE24100P-2450MHz test board amplifier circuit, No damage at all phase angles.

RFHIC


Typical CW Performance Charts

* Bias condition (I_{DQ} =50mA @ V_{DS} =50V, Tc=25°C)

Peak Power, Drain Efficiency vs. Frequency



Power Gain, Drain Efficiency vs. Output Power

www.rfhic.com

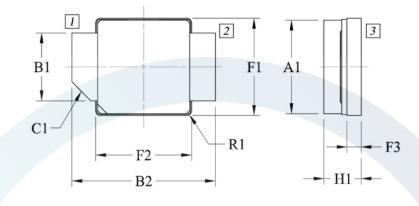
RFHIC

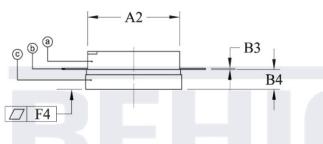
Application Circuit

Part List

Part	Description	Part Number	Manufacturer	
R1	10 Ohm Chip Resistor, 1608	MCR03EZPJ100	ROHM	
R2	20 Ohm Chip Resistor, 2012	MCR10EZHJ200	ROHM	
C1	2.2uF, 100V MLCC	GRM32ER72A225KA35L	MURATA	
C2	10pF High Q Capacitor	501CHB100JSLE	TEMEX	
C3	100pF High Q Capacitor	501CHB101JSLE	TEMEX	
C4	33uF Aluminum Capacitor	BDS100VC33MJ10TP	SAMYOUNG	
C5, C14	1pF High Q Capacitor	501CHB1R0BSLE	TEMEX	
C6	10pF High Q Capacitor	201CHB100JSLE	TEMEX	
C7	10uF, 16V MLCC	C3216X7R1C106K	TDK	
C8	1nF Chip Capacitor	GRM188R71H102KA01D	MURATA	
С9	1.5pF High Q Capacitor	201CHA1R5BSLE	TEMEX	
C10	100pF Chip Capacitor	GRM1885C1H101JA01D	MURATA	
C11	10pF Chip Capacitor	GRM1885C1H100JA01D	MURATA	
C12	10uF, 100V MLCC	RS80R2A106M	MARUWA	
C13	0.9pF High Q Capacitor	501CHB0R9BSLE	TEMEX	
EMI1	EMI FILTER	CTH32R102S20A-TM	MARUWA	
CON1	DC Connector	22-04-1101	MOLEX	
РСВ	$\epsilon r=3.5 \pm 0.05, 0.030$ " (0.762mm)	RF-35TC	TACONIC.	
TR1	100W GaN Transistor	IE24100P	RFHIC	

_

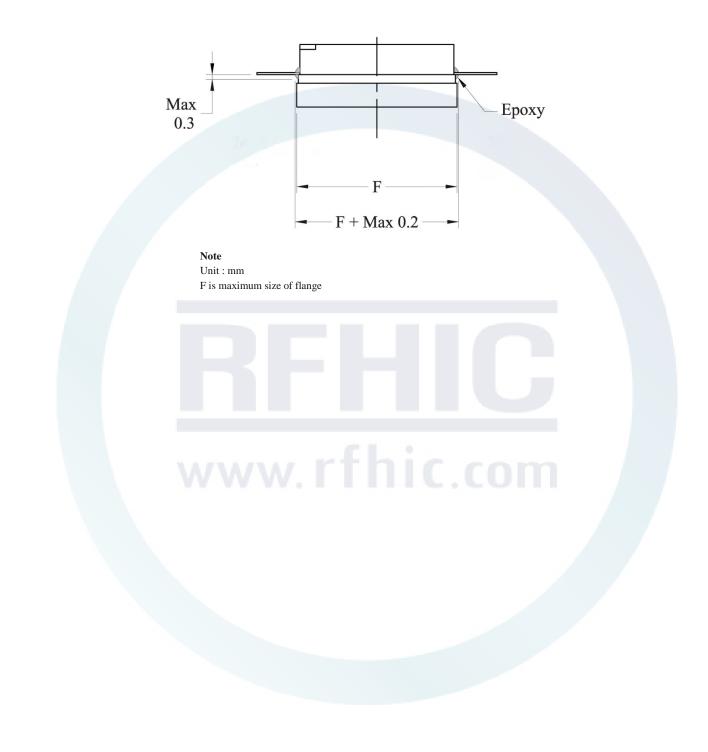

Korean Facilities : 82-31-8069-3036 / rfsales@rfhic.com US Facility : 919-677-8780 / sales@rfhicusa.com


C

RFH

Package Dimensions (Type : NS-AS01)

* Unit: mm[inch] | Tolerance ± 0.15 [.006]



Pin Description			Dim.	INCH			MILLIMETER		
Pin No	Function		Dim.	MIN	ТҮР	MAX	MIN	ТҮР	MAX
1	Gate		A1	.380	.384	.390	9.65	9.75	9.90
2	Drain	W	A2	.380	.384	.390	9.65	9.75	9.90
3	Source		B1	.274	.280	.285	6.97	7.10	7.23
		-	B2	.579	.598	.618	14.70	15.20	15.70
			B3	.004	.005	.007	0.10	0.13	0.18
	a- Lidb- Lead Frame		B4	.080	.085	.090	2.03	2.15	2.28
			C1 (Chamfer)	.075	.079	.083	1.90	2.00	2.10
©- Flange			F1	.395	.400	.405	10.03	10.16	10.29
			F2	.395	.400	.405	10.03	10.16	10.29
			F3	.054	.059	.064	1.37	1.50	1.63
			F4	-	.001	_	-	0.03	-
			H1	.148	.159	.167	3.75	4.05	4.25
			L1	-	-	-	-	-	-
			L2	-	-	-	-	-	-
			R1 (Radius)	.016	.020	.024	0.40	0.50	0.60

Korean Facilities : 82-31-8069-3036 / rfsales@rfhic.com US Facility : 919-677-8780 / sales@rfhicusa.com

Sealing Epoxy Tolerance (Type : NS-AS01)

GaN Power Transistors

Revision History

Part Number	Release Date	Version	Description	Data Sheet Status
IE24100P	April, 2017	0.1	Initial Release of DataSheet	Preliminary
IE24100P	October, 2017	1.0	Revision : Update Test Data	Final

RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product at any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclaims any and all liability, including without limitation consequential or incidental damages. RFHIC products are not intended for use in life support equipment or application where malfunction of the product can be expected to result in personal injury or death. Buyer uses or sells such products for any such unintended or unauthorized application, buyer shall indemnify, protect and hold RFHIC Corporation and its directors, officers, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use.

Sales, inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US Sales Team at 919-677-8780. For all other inquiries, please contact the International Sales Team at 82-31-8069-3036.